



# cfDNA/cfRNA Testing and Monitoring

**PLATFORM + CAPABILITIES** 

Accurate, sensitive, and fast nucleic acid quantification is critical for robust clinical advancement. With an ultra-low limit of detection, absolute quantification abilities, rapid turn-around time, and low cost, allow Droplet Digital™ PCR (ddPCR™) to easily expose developmental clues via single time point testing or longitudinal monitoring of cell free DNA/RNA mutations.

Leverage ddPCR assays using either blood or tissue samples to accomplish:



Biodesix is deeply experienced in ddPCR through a long-standing relationship with Bio-Rad Laboratories, and our own development of five on-market clinical tests and over 200 research and development assays.

## Many assays are pre-validated and readily available (NYS CLEP approved):

- KRAS: G12C, G12D, G12V
- EGFR: L858R, del19, del19 multiplex\*, Uncommon Variants (G719A, G719C, G719S, S758I and L861Q) multiplex\*, T790M, C797S multiplex (discriminating)
- ALK fusions
- ROS1
- RET
- BRAF: V600E

## Examples of assays that have been functionally tested in our lab:

- Microsatellite instability (MSI)
- ESR1 multiplex\*
- KRAS multiplex\*
- AKT1: E17K
- YAP/TA7 fusions
- EGFR exon 20 INDELs
- HER2 exon 20 INDELs
- GNAQ/GNA11

Thousands of assays are available in the Bio-Rad catalog and may be validated in the Biodesix laboratory. For target assays that are not readily available for clinical use, Biodesix facilitates validation. Additionally, Biodesix is able to design and develop custom assays for novel mutation targets. Please connect with our team for more information.

<sup>\*</sup>Multiplexed assays screen for the presence or absence of multiple mutations in a single sample. They can be discriminating or non-discriminating.

#### ASSAY PERFORMANCE SPECIFICATIONS (LIQUID BIOPSY)<sup>1,2</sup>

| ASSAY                                                                  | LOD (%MVF) | SENSITIVITY, % | SPECIFICITY, % | CONCORDANCE, % |
|------------------------------------------------------------------------|------------|----------------|----------------|----------------|
| KRAS (G12C, G12D,<br>G12V)                                             | 0.02       | 87.9           | 100            | 96.0           |
| EGFR sensitizing<br>(del19, L858R)                                     | 0.02       | 95.9           | 100            | 98.8           |
| EGFR (T790M)                                                           | 0.02       | 86.7           | 100            | 96.4           |
| EGFR Uncommon<br>Variants (G719A,<br>G719C, G719S,<br>S758l and L861Q) | 0.02       | 100            | 100            | 100            |
| ALK                                                                    | 0.02       | ~85            | 100            | ~92            |
| ROS1                                                                   | 0.02       | 100            | 100            | 100            |
| RET                                                                    | 0.02       | 100            | 100            | 100            |

#### **Technology Specifications**

#### QX200™ Droplet Digital™ PCR System:

- Dynamic range: 5 orders of magnitude
- Starting sample size: 20µl
- Capacity: 1-96 samples, 8 samples/cartridge
- 2 detection channels, allowing up to 4 discernible targets: FAM(EvaGreen), HEX(VIC)
- Precision: ±10%

### QX600™ Droplet Digital™ PCR System:

- Dynamic range: 5 orders of magnitude
- Starting sample size: 20µl
- Capacity: 1-96 samples, 8 samples/cartridge
- 6 detection channels, allowing up to 12 discernible targets: FAM, HEX, Cy5, Cy5.5, ROX, ATTO 590
- Precision: ±10%

#### REFERENCES

- 1. Development and Clinical Utility of a Blood-Based Test Service for the Rapid Identification of Actionable Mutations in Non–Small Cell Lung Carcinoma, Mellert, Hestia et al. The Journal of Molecular Diagnostics, Volume 19, Issue 3, 404 416.
- 2. Reese, JM et al. Validation of the EGFR Uncommon Variants Multiplex ddPCR Assay for Blood-Based Testing in NSCLC. Poster presented at: The Association for Molecular Pathology Annual Meeting; November 7th, 2019; Baltimore, MD.



